Graph-based Semi-Supervised Learning of Translation Models from Monolingual Data
نویسندگان
چکیده
Statistical phrase-based translation learns translation rules from bilingual corpora, and has traditionally only used monolingual evidence to construct features that rescore existing translation candidates. In this work, we present a semi-supervised graph-based approach for generating new translation rules that leverages bilingual and monolingual data. The proposed technique first constructs phrase graphs using both source and target language monolingual corpora. Next, graph propagation identifies translations of phrases that were not observed in the bilingual corpus, assuming that similar phrases have similar translations. We report results on a large Arabic-English system and a medium-sized Urdu-English system. Our proposed approach significantly improves the performance of competitive phrasebased systems, leading to consistent improvements between 1 and 4 BLEU points on standard evaluation sets.
منابع مشابه
Learning Translation Models from Monolingual Continuous Representations
Translation models often fail to generate good translations for infrequent words or phrases. Previous work attacked this problem by inducing new translation rules from monolingual data with a semi-supervised algorithm. However, this approach does not scale very well since it is very computationally expensive to generate new translation rules for only a few thousand sentences. We propose a much ...
متن کاملSemi-Supervised Learning for Neural Machine Translation
While end-to-end neural machine translation (NMT) has made remarkable progress recently, NMT systems only rely on parallel corpora for parameter estimation. Since parallel corpora are usually limited in quantity, quality, and coverage, especially for low-resource languages, it is appealing to exploit monolingual corpora to improve NMT. We propose a semisupervised approach for training NMT model...
متن کاملSemi-supervised learning for Machine Translation
Statistical machine translation systems are usually trained on large amounts of bilingual text which is used to learn a translation model, and also large amounts of monolingual text in the target language used to train a language model. In this chapter we explore the use of semi-supervised methods for the effective use of monolingual data from the source language in order to improve translation...
متن کاملTransductive learning for statistical machine translation
Statistical machine translation systems are usually trained on large amounts of bilingual text and monolingual text in the target language. In this paper we explore the use of transductive semi-supervised methods for the effective use of monolingual data from the source language in order to improve translation quality. We propose several algorithms with this aim, and present the strengths and w...
متن کاملSemi-supervised Chinese Word Segmentation based on Bilingual Information
This paper presents a bilingual semisupervised Chinese word segmentation (CWS) method that leverages the natural segmenting information of English sentences. The proposed method involves learning three levels of features, namely, character-level, phrase-level and sentence-level, provided by multiple submodels. We use a sub-model of conditional random fields (CRF) to learn monolingual grammars, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014